ZHAN De-sheng. Asymptotic Behavior of Mininmizers for a Class ofLandau-Lifshitz Functions[J]. Journal of Jianghan University(Natural Science Edition), 2012, 40(2): 13-15.
[1]Hang F B,Lin F H.Static theory for planar ferromagnets and antiferromagnets[J].Acta Math SinicaEnglish Series,2001,17541-580. [2]Papanicolaou N,Spathis P N.Semitopological solutions in planar ferromagnets[J].Nonlinearity,1999,12 285-302. [3]Lei Y T.Radial minimizer of p-Ginzburg-Landau functional with nonvanishing Dirichlet boundary condition[J].Nonlinear Analysis,2005,60(1)117-128. [4]Lei Y T.Asymptotics for the radial minimizer of p-Ginzburg-Landau type with p∈(n-1, n) nonlinear anai,DOI10.1016/j.na.2007.11.010. [5]Bethuel F,Brezis H,Helein F.Ginzburg-Landau vortices[D].Birkhauser,1994. [6]André N,Shafrir I.Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition[J].Calc Var PDE,1998,7(3)191-217. [7]Golovaty D,Berlyand L.On uniqueness of vector-value minimizers of the Ginzburg-Landau functional in annular domains[J].Calc Var PDE,2002,14(2)213-232. [8]Herve R M,Herve M.Etude qualitative des solutions réelles d′une équation différentielle liée à l′ěquation de Ginburg-Landau[J].Ann IHP Anal Nonline,1994, 11427-440.