江汉大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (5): 395-399.doi: 10.16389/j.cnki.cn42-1737/n.2019.05.002

• 数学 • 上一篇    下一篇

非线性Volterra方程零解的全局渐近稳定性

黄明辉,赵国瑞,刘君   

  1. 广州城建职业学院 数学教研室,广东 广州 510925
  • 发布日期:2019-10-08
  • 作者简介:黄明辉(1988—),男,讲师,硕士,研究方向:常微分方程与动力系统。
  • 基金资助:
    国家自然科学基金资助项目(61773128);广东省科技创新培育专项资金资助项目(pdjhb0987)

Global Asymptotic Stability of Zero Solutions for Nonlinear Volterra Equation

HUANG Minghui,ZHAO Guorui,LIU Jun   

  1. Mathematics Teaching and Research Department,Guangzhou City Construction College,Guangzhou 510925,Guangdong,China
  • Published:2019-10-08

摘要: 利用不动点理论,研究具有可变时滞的非线性Volterra方程,给出了该方程在C1空间上零解全局渐近稳定的新条件。这些新条件不需要时滞τ可微,也不要求τ′≠1。所得结论推广了已有文献中的相应结果,并给出了一个实例验证了所得结论的有效性。

关键词: 非线性, Volterra方程, 不动点定理, 渐近稳定性, 零解

Abstract: In this paper,the following nonlinear Volterra equation with variable delays was studied by using the fixed point theory. Some new conditions were given to ensure that the zero solutions are globally asymptotically stable in C1. Previously,almost all scholars used fixed point theory to study the asymptotic stability of zero solutions of nonlinear neutral differential equations with variable delays,it required τ quadratic differentiability and τ′≠1. Unlike most research methods,these conditions do not require a quadratic differentiability of delay τ and τ′≠1. The results obtained generalize the corresponding results in the literatures. An example is given to verify the validity of the conclusions.

Key words: nonlinear, Volterra equation, fixed point theorem, asymptotic stability, zero solutions

中图分类号: