江汉大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (3): 51-61.doi: 10.16389/j.cnki.cn42-1737/n.2024.03.006

• 计算机科学与技术 • 上一篇    

基于改进通道多头注意力机制的 U-Net3+ 医学图像分割算法研究

张全鑫a,叶 曦*a,b,杨志红a,向 青a   

  1. 江汉大学 a. 智能制造学院;b. 工业烟尘污染控制湖北省重点实验室,湖北 武汉 430056
  • 发布日期:2024-06-17
  • 通讯作者: 叶 曦
  • 作者简介:张全鑫(1999— ),女,硕士生,研究方向:计算机视觉。
  • 基金资助:
    工业烟尘污染控制湖北省重点实验室开放课题(HBIK2022-08)

U-Net3+ Medical Image Segmentation Algorithm Based on Improved Channel Multi-head Attention Mechanism

ZHANG Quanxina,YE Xi*a,b,YANG Zhihonga,XIANG Qinga   

  1. a. School of Intelligent Manufacturing;b. Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University,Wuhan 430056,Hubei,China
  • Published:2024-06-17
  • Contact: YE Xi

摘要: 医学图像分割作为当前的研究热点之一,分割精度对于后续的医学诊断影响巨大。针对 目前大多数医学图像分割技术无法充分利用并融合多尺度特征信息的缺陷,提出了一种融合通 道注意力机制的改进 U-Net3+图像分割算法。在 U-Net3+的全局跳跃连接结构的基础上, 设计一种新的通道注意力机制并将它嵌入到 U-Net3+网络的解码路径中,帮助分割网络在拼 接全局特征图时调整重要信息的训练权重从而高效融合全局特征信息。最后,在两种经典的医 学图像分割数据集上将该模型进行对比评估,平均 Dice 系数分别达到了 74. 31% 和 77. 16%,相 比原本 U-Net3+的 Dice 系数分别提高了 3. 01% 和 2. 98%。实验结果表明改进后的网络模型 有效提高了医学图像的分割精度。

关键词: U-Net3+, 图像分割, 注意力机制

Abstract: Medical image segmentation is one of the current research hotspots,and the segmentation accuracy significantly impacts the subsequent medical diagnosis. In this paper, we proposed an improved U-Net3+ image segmentation algorithm that incorporated a channel attention mechanism to address the shortcomings of most current medical image segmentation techniques that can not fully utilize and fuse multi-scale feature information. Based on the global jump connection structure of U-Net3+ ,a new channel attention mechanism was designed and embedded into the decoding path of the U-Net3+ network to help the segmentation network adjust the training weights of important information when stitching the global feature map to fuse the global feature information efficiently. Finally,the model was compared and evaluated on two classical medical image segmentation datasets, and the average Dice coefficients reached 74. 31% and 77. 16%,respectively,were 3. 01% and 2. 98% higher than the original U-Net3+ Dice coefficients. The experimental results show that the improved network model effectively improves the segmentation accuracy of medical images.

Key words: U-Net3+, image segmentation, attention mechanism

中图分类号: