江汉大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (6): 78-83.doi: 10.16389/j.cnki.cn42-1737/n.2020.06.011

• 计算机与信息科学 • 上一篇    下一篇

基于最大熵的进化区域生长分割算法

魏光杏1,周献中2,李华1   

  1. 1. 滁州职业技术学院 信息工程学院,安徽 滁州 239000;2. 南京大学 工程管理学院,江苏 南京 210093
  • 出版日期:2020-12-28 发布日期:2020-12-18
  • 作者简介:魏光杏(1976— ),男,副教授,硕士,研究方向:模式识别、人工智能。

Evolutionary Region Growing Segmentation Algorithm Based on Maximum Entropy

WEI Guangxing1,ZHOU Xianzhong2,LI Hua1   

  1. 1. School of Information Engineering,Chuzhou Polytechnic,Chuzhou 239000,Anhui,China;2. School of Management and Engineering,Nanjing University,Nanjing 210093,Jiangsu,China
  • Online:2020-12-28 Published:2020-12-18
  • Supported by:
    国家自然科学基金资助项目(71671086);安徽省质量工程项目(2019kfkc227);滁州职业技术学院校级质量工程项目(2018sjjd002,2017zlgc008,2017zlgc044)

摘要: 区域生长进行分割是一种快速、易于实现的图像分割算法,但对初始化区域的数目有着一定的敏感性。提出了基于最大熵的进化区域生长分割算法,利用进化最大熵原理计算出进化区域生长分割的区域数目,根据区域数目产生种群,计算并获取每个种群中的最优种子及其适应度,进而实现图像的分割。实验结果表明该算法能更准确地获得图像的分割结果。

关键词: 最大熵, 区域生长, 图像分割

Abstract: Region growing segmentation is a fast and easy algorithm for image segmentation,but it is sensitive to the number of initialization points. An evolutionary region growing segmentation algorithm based on maximum entropy is proposed. The principle of evolutionary maximum entropy is used to calculate the number of regions that are segmented by the evolutionary region. The population is generated according to the number of regions,and the optimal seed and fitness value in each population is calculated and obtained. And then the segmentation of the image is realized. Experimental results show that the algorithm can obtain the image segmentation results more accurately.

Key words: maximum entropy, region growing, image segmentation

中图分类号: