江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (4): 87-96.doi: 10.16389/j.cnki.cn42-1737/n.2022.04.011

• 计算机科学 • 上一篇    

基于改进U-Net 网络的神经元分割算法

程维东a,叶曦*a,王芳b,平晶晶c,钱同惠a,张志玮a   

  1. 江汉大学 a. 智能制造学院;b. 人工智能学院;c. 设计学院,湖北 武汉 430056
  • 发布日期:2022-08-30
  • 通讯作者: 叶曦
  • 作者简介:程维东(1995— ),男,硕士生,研究方向:图像处理。
  • 基金资助:
    湖北省重点研发计划项目(2020CBC05)

Neuron Segmentation Algorithm Based on Improved U-Net Network

CHENG Weidonga,YE Xi*a,WANG Fangb,PING Jingjingc,QIAN Tonghuia,ZHANG Zhiweia   

  1. a. School of Intelligent Manufacturing;b. School of Artificial Intelligence;c. School of Design,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2022-08-30
  • Contact: YE Xi

摘要: 针对目前电镜神经元图像分割的特征模糊性、复杂程度高以及边缘有损等缺陷,提出了一种将自注意力机制、叠加损失函数与U-Net 网络相结合的网络模型,实现了对神经元图像的精确分割。首先,在原始图像的基础上通过几何变换实现数据集增广,有效地抑制了过拟合;其次,采用改进的自注意力机制对图像细节进行重点学习,提高模型分割的准确度;最后,将Dice loss 与相对熵(KL 散度)进行适当组合,使得网络性能有所提升。该模型在ISBI 2012 数据集上的实验结果显示,其正确率、F1 指标、准确度和召回率分别达到0. 930 43、0. 956 79、0. 953 26、0. 960 34,图像分割效果在整体和细节上分割相对更准确,并且细胞膜分割基本没有断裂。

关键词: U-Net 网络, 神经元分割, 注意力机制, KL 散度, BN 层

Abstract: A network model combining self-attentive mechanism, superposition loss function,and U-Net network was proposed to achieve accurate segmentation of neuronal images for the current defects of feature ambiguity,high complexity,and lossy edges of electron microscopy neuronal image segmentation. Firstly,the geometric transformation was performed with the original image to enlarge the data set and reduce overfitting. Secondly,the improved self-attention mechanism was used to focus on learning image details to improve the accuracy of model segmentation. Finally,the network performance was improved by appropriately combining Dice Loss with relative entropy (KL scatter). The network experimented on the ISBI 2012 dataset, and its correctness, F1 index,accuracy,and recall reached 0. 930 43,0. 956 79,0. 953 26,and 0. 960 34,respectively. The image segmentation effect was relatively more accurate in overall and detail segmentation,and the cell membrane segmentation was basically unbroken.

Key words: U-Net network, neuron segmentation, attention mechanism, KL scatter, BN layer

中图分类号: