江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (4): 75-86.doi: 10.16389/j.cnki.cn42-1737/n.2022.04.010

• 计算机科学 • 上一篇    下一篇

结合属性信息与对偶注意力的实体对齐关系感知邻域匹配模型

王小鹏1,李丹*2   

  1. 1. 桂林电子科技大学 计算机与信息安全学院,广西 桂林 541004;2. 桂林信息科技学院,广西 桂林 541004
  • 发布日期:2022-08-30
  • 通讯作者: 李丹
  • 作者简介:王小鹏(1994— ),男,硕士生,研究方向:实体对齐、知识图谱、机器学习。

Entity Alignment Relation-aware Neighborhood Matching Model Combining Attribute Information and Dual Attention

WANG Xiaopeng1,LI Dan*2   

  1. 1. School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China;2. Guilin Institute of Information Technology,Guilin 541004,Guangxi,China
  • Published:2022-08-30
  • Contact: LI Dan

摘要: 基于实体对齐的关系感知邻域匹配(RNM)模型进行改进,提出结合属性信息与对偶注意力机制的实体对齐关系感知邻域匹配模型。引入RDGCN 的对偶注意力对原来GCN 的关系结构学习能力进行优化,同时加入属性信息,联合关系结构与属性信息作为关系感知邻域匹配的嵌入。该模型在3 个真实数据集上的对齐准确率可分别达到86. 91%、87. 67% 和94. 05%,与基准模型相比有进一步的提升。实验结果表明提出的方法可以有效地识别出对齐实体对。

关键词: 实体对齐, 属性信息, 关系匹配, 知识融合, 知识图谱, 图卷积网络

Abstract: Based on improving the entity alignment relationship-aware neighborhood matching(RNM) model, an entity-aligned relationship-aware neighborhood matching model combining attribute information and dual attention mechanisms was proposed. The dual attention introduced by RDGCN was used to optimize the relational structure learning ability of the original GCN. At the same time, attribute information was added, and relational structure and attribute information were combined with embedding relational aware neighborhood matching. The accuracy of alignment on three real data sets can reach 86. 91%, 87. 67% and 94. 05%, respectively, further improved compared with the benchmark model. Experimental results show that the proposed method can effectively identify the aligned entity pairs.

Key words: entity alignment, attribute information, relationship matching, knowledge fusion, knowledge graph, graph convolution network

中图分类号: