江汉大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (4): 47-56.doi: 10.16389/j.cnki.cn42-1737/n.2023.04.006

• 自动化研究 • 上一篇    

基于 YOLOv5 焊缝图像远程检测系统设计

孙 超1,2 ,冯耀龙1 ,章 红*1 ,李少伟2   

  1. 1. 江汉大学 智能制造学院,湖北 武汉 430056;2. 华中科技大学 人工智能与自动化学院, 湖北 武汉 430074
  • 发布日期:2023-08-19
  • 通讯作者: 章 红
  • 作者简介:孙 超(1984— ),男,副教授,博士,研究方向:智能传感器。
  • 基金资助:
    江汉大学校级科研基金资助项目(2022XKZX32);江汉大学大学生科研项目(2022zd129)

Design of Remote Inspection System for Welding Seam Image Based on YOLOv5

SUN Chao1,2 ,FENG Yaolong1 ,ZHANG Hong*1 ,LI Shaowei1   

  1. 1. School of Intelligent Manufacturing,Jianghan University,Wuhan 430056,Hubei,China;2. School of Artifi? cial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China
  • Published:2023-08-19
  • Contact: ZHANG Hong

摘要: 针对焊缝图像传输、储存与检测等问题,设计了一套基于 YOLOv5 焊缝图像远程检测系 统。硬件系统由摄像头模块 、电源降压模块 、主控单元模块 、无线射频模块组成。软件系统由 WinForms 应用程序开发,以可视化界面的形式将焊缝原图和标注后的图像在监控端显示。该检 测系统在 YOLOv5 网络模型中添加了注意力机制,增强了焊缝特征提取能力;在 YOLOv5 模型 的 Neck 部分中添加了小目标检测层,增强了模型的泛化能力。基于 870 张图像对 YOLOv5 卷积 神经网络进行训练,然后使用 130 张图像测试。实验结果表明,改进后的模型最终 mAP 值稳定在 93. 42%,相较于原模型对焊缝的检测精度提升了 0. 53%。

关键词: 目标检测, YOLOv5, 深度学习, 注意力机制, WinForms

Abstract: Aiming at the problems of welding seam image transmission,storage,and detection,this research designed a remote welding seam image detection system based on YOLOv5. The hardware system consisted of the camera module, power step-down module,main control unit module,and radio frequency module. The software system was developed by the WinForms application program,and the original welding seam image and marked image were displayed on the monitoring end in the form of a visual interface. In this study,an attention mechanism was added to the YOLOv5 network model to enhance the ability of weld seam feature extraction. A small target detection layer was added to the Neck part of the YOLOv5 model to enhance the generalization ability of the model. The YOLOv5 convolution neural network was trained with 870 images and tested with 130 images. The experimental results showed that the mAP value of the improved model was finally stable at 93. 42%,0. 53% higher than that of the original model.

Key words: object detection, YOLOv5, deep learning, attention mechanism, WinForms

中图分类号: