江汉大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (1): 79-88.doi: 10.16389/j.cnki.cn42-1737/n.2023.01.010

• 计算机科学 • 上一篇    下一篇

基于多层次自注意力机制的 U-Net图像分割算法

张志玮,叶曦* ,程维东,杨志红,谢正媛   

  1. 江汉大学 智能制造学院,湖北 武汉 430056
  • 发布日期:2023-02-21
  • 通讯作者: 叶曦
  • 作者简介:张志玮(1998—),男,硕士生,研究方向:深度学习与图像分割。*通信作者:叶曦(1989—),男,讲师,博士,研究方向:深度学习、智能优化控制。
  • 基金资助:
    湖北省重点研发计划项目(2020BCB054);江汉大学四新学科专项项目(2022SXZX32)

Clinical Analysis of a Case of Systemic Light Chain Amyloidosis with Tongue Damage as the First Manifestation

ZHANG Zhiwei,YE Xi*,CHENG Weidong,YANG Zhihong,XIE Zhengyuan   

  1. School of Intelligent Manufacturing,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2023-02-21
  • Contact: YE Xi

摘要: 针对 U-Net 图像分割在下采样过程中会丢失过多信息且在上采样过程恢复效果不佳,从而导致图像分割精度降低的缺陷,提出了一种基于多层次自注意力机制的 U-Net图像分割算法。该多层次自注意力机制在每一层上采样层前均嵌入自注意力模块,将上采样层的输入与缩放的原图拼接后处理成模板图,再与原本的输入信息融合后输出到上采样层。该算法不仅能通过拼接原图的自注意力模块进一步提供更多细节信息,还能利用上采样层的特征选择功能减少拼接原图带来的背景噪音,提高模型的分割精度。最后,在 PASCAL VOC 数据集和 DeepFashion2数据集的基础上进行了人体分割和服装分割实验。实验结果证明,该方法能较好地改善图像的分割性能,从而证明了其正确性和有效性。

关键词: 图像分割, U-Net, 自注意力模块, 多层次

Abstract: Aiming at the defect that U-Net image segmentation loses too much information in the down-sampling process and the recovery effect is poor in the up-sampling process,which leads to the reduction of image segmentation accuracy,this paper proposes a U-Net image segmentation algorithm based on the multi-level self-attention mechanism. The multi-level self-attention mechanism embedded a self-attention module in front of the upper sampling layer of each layer,which processed the input and scaled the original image of the upper sampling layer into a template image after splicing. Then the upper sampling layer after fusing it with the original input information was output. The U-Net image segmentation algorithm based on the multi-level self-attention mechanism proposed in this paper can not only provide more detailed information through the self-attention module of the original image mosaic but also reduce the impact of background noise caused by the original image mosaic by using the feature selection function of the upper sampling layer and improve the segmentation accuracy of the model. Finally, human body and garment segmentation experiments based on the PASCAL VOC and DeepFashion2 data set were carried out. The experimental results show that the improved method proposed in this paper can improve the image segmentation performance, thus proving the correctness and effectiveness of this method.

Key words: image segmentation, U-Net, self-attention module, multi-level

中图分类号: