江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (3): 12-20.doi: 10.16389/j.cnki.cn42-1737/n.2022.03.002

• 应用数学 • 上一篇    下一篇

基于Markov 链优化灰色GM(1,1)模型预测城市居民用电量

陈志恒a,王宇凡b,熊昕*b   

  1. 江汉大学 a. 智能制造学院;b. 人工智能学院,人工智能研究院,湖北 武汉 430056
  • 发布日期:2022-06-24
  • 通讯作者: 熊昕
  • 作者简介:陈志恒(2000— ),男,研究方向:灰色模型、人工智能与智能信息处理。
  • 基金资助:
    国家自然科学基金资助项目(11901245);江汉大学校级科研项目(2021yb057)

Electricity Consumption Prediction of Urban Residents Based on Grey GM(1,1)Model Optimized by Markov Chain

CHEN Zhihenga,WANG Yufanb,XIONG Xin*b   

  1. a. School of Intelligent Manufacturing;b. School of Artificial Intelligence,Artificial Intelligence Institute,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2022-06-24
  • Contact: XIONG Xin

摘要: 针对数据列波动对GM(1,1)模型影响的问题,通过引入Markov 概率矩阵来减小波动,以实现其预测精度的提高。以苏州市2015 年1 月-2020 年10 月之间每月的居民用电量作为模型的训练数据,以2020 年11 月-2021 年3 月每月居民用电量的数据作为测试数据,计算模型的预测精度,并预测2021 年4 月的居民用电量。实证结果得出:GM(1,1)模型预测的平均相对误差为24. 70%,而通过Markov 链进行优化后其平均相对误差为11. 62%,通过Markov 链进行优化后的GM(1,1)模型预测效果要优于传统GM(1,1)模型。

关键词: 居民用电量预测, 灰色GM(1,1)模型, Markov 链

Abstract: In this paper, the Markov probability matrix was introduced to reduce the influence of the high fluctuation data columns on the GM(1,1) model to improve its prediction accuracy. Moreover,the monthly data of the residential electricity consumption in Suzhou from January 2015 to October 2020 were selected as the model's training data. The monthly data of the residential electricity consumption from November 2020 to March 2021 were used as the test data to measure the model's prediction accuracy and forecast the residential electricity consumption in April 2021. The empirical results showed that the average relative error of the GM(1,1)model was 24. 70%,while the average relative error of the GM(1,1) model optimized by the Markov chain was 11. 62%. The prediction performance superiority of the GM(1,1) model optimized by the Markov chain over the traditional GM(1,1)model is demonstrated in this paper.

Key words: prediction on the residential electricity consumption, grey GM(1,1) model, Markov chain

中图分类号: