江汉大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (6): 63-71.doi: 10.16389/j.cnki.cn42-1737/n.2023.06.009

• 计算机科学与技术 • 上一篇    

基于互通道损失数据增强网络的细粒度图像分类

胡晓斌,彭太乐*   

  1. 淮北师范大学 计算机科学与技术学院,安徽 淮北 235000
  • 发布日期:2023-12-25
  • 通讯作者: 彭太乐
  • 作者简介:胡晓斌(1996— ),男,硕士生,研究方向:图像分类。
  • 基金资助:
    国家自然科学基金资助项目(61976101);安徽省高校自然科学研究项目(KJ2017A843)

Fine-grained Image Classification Based on Mutual Channel Loss Data Augmentation Network

HU Xiaobin,PENG Taile   

  1. School of Computer Science and Technology,Huaibei Normal University,Huaibei 235000,Anhui,China
  • Published:2023-12-25
  • Contact: PENG Taile

摘要: 寻找与细微特征对应的区别性局部区域是解决细粒度图像分类问题的关键。近年来,通 过弱监督数据增强网络(WS-DAN)进行细粒度分类取得了优异的效果,但其单一的交叉熵损 失(CE-Loss)使得网络专注于全局判别性区域,而遗漏了一些局部判别性区域。针对这一问 题,提出基于互通道损失(MC-Loss)的数据增强网络(MC-DAN),互通道损失能强制属于同 一类别的特征通道更具有区分性。其次,引入反事实注意力机制(CAL),通过反事实干预来鼓励 网络学习更多的注意力信息。此外,提出一种空间注意力和通道注意力相结合的注意力模块,以 更好地关注图像中的对象区域。在 3 个公共数据集上的综合实验表明,该方法能有效实现分类。

关键词: 细粒度图像分类, 互通道损失, 反事实注意力学习, 数据增强

Abstract: Finding discriminative local regions corresponding to fine-grained features is the key to solve fine-grained image classification problems. Recently, fine-grained classification by weakly supervised data augmentation network(WS-DAN)has achieved excellent results,but its single cross-entropy loss(CE-Loss)makes the network focus on global discriminative regions and misses some local discriminative regions. To address this problem,this paper proposed a data augmentation network (MC-DAN) based on mutual channel loss(MC-Loss),which could force feature channels belonging to the same class to be more discriminative. Second,a counterfactual attention mechanism(CAL)was introduced to encourage the network to learn more attention information by counterfactual intervention. In addition, an attention module combining spatial attention and channel attention was proposed to better focus on object regions in images. Comprehensive experiments on three public datasets showed that the method could effectively achieve classification.

Key words: fine-grained image classification, mutual channel loss, counterfactual attention learning, data augmentation

中图分类号: