江汉大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (6): 513-521.doi: 10.16389/j.cnki.cn42-1737/n.2018.06.005

• 计算机科学 • 上一篇    下一篇

一种基于NSST 的图像去噪算法

陆焱a,胡玉荣*b   

  1. 荆楚理工学院 a. 计算机工程学院;b. 科技处,湖北 荆门 448000
  • 出版日期:2018-12-28 发布日期:2018-11-29
  • 通讯作者: 胡玉荣
  • 作者简介:陆焱(1981—),女,讲师,硕士,研究方向:智能信息处理。
  • 基金资助:
    荆楚理工学院科研基金资助项目(YB201703);荆门市科研计划资助项目(YDKY2017005)

An Image Denoising Algorithm Based on Non-subsampled Shearlet Transform

LU Yana,HU Yurong*b   

  1. a. School of Computer Engineering;b. Department of Science and Technology,Jingchu University of Technology,Jingmen 448000,Hubei,China
  • Online:2018-12-28 Published:2018-11-29
  • Contact: HU Yurong

摘要: 数字图像处理对输入的图像有较高的要求,如果输入的图像噪声较大或者有干扰物,对图像特征的提取乃至后续的检测识别都有较大的影响。针对该问题,提出基于非下采样Shearlet变换的图像去噪算法,该算法采用非下采样Shearlet 变换能够从多个尺度、多个方向上分解图像,从而更好地描述图像的轮廓、曲线等细节信息。利用阈值处理分解后的系数达到去噪效果。实验结果表明,该算法在去除图像噪声的同时能够很好地保留图像的细节,更有利于图像的检测。

关键词: 图像去噪, 图像识别, 非下采样Shearlet变换, 概率阈值去噪

Abstract: In digital image processing,the requirements for the input image are high,and if there exists noise and interference in the input image,the feature extraction and the following detection and recognition will be inaccurate. To solve the problem,this paper proposed an image denoising algorithm based on non-subsampled shearlet transform. The algorithm used non-subsampled shearlet transform to decompose the image from multiple dimensions and directions,which could describe the detailed information better,such as outline and curve of the image. Besides,the algorithm utilized the coefficients after the threshold value decomposition,to achieve noise removal. The results showed that the algorithm could keep the detailed information of image after noise removal,which contributed to the image detection and recognition.

Key words: image denoising, image recognition, non-subsampled shearlet transform, probability threshold denoising

中图分类号: