江汉大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (4): 5-14.doi: 10.16389/j.cnki.cn42-1737/n.2024.04.001

• 光电化学材料与器件研究 • 上一篇    

花状 MgCo2O4@CoMn LDH 复合材料的制备与性能研究

胡潭伟,丁 悦,唐梦凡,倪 航,田 玉*,朱小龙,郑 广   

  1. 江汉大学 光电化学材料与器件教育部重点实验室,湖北 武汉 430056
  • 发布日期:2024-09-29
  • 通讯作者: 田 玉
  • 作者简介:胡潭伟(1998— ),男,硕士生,研究方向:储能材料及器件的性能。
  • 基金资助:
    江汉大学一流学科建设重大研究专项(2023XKZ007)

Preparation and Properties of Flower-like MgCo2O4@CoMn LDH Nanocomposites

HU Tanwei,DING Yue,TANG Mengfan,NI Hang,TIAN Yu*,ZHU Xiaolong,ZHENG Guang   

  1. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2024-09-29
  • Contact: TIAN Yu

摘要: 超级电容器(SCs)因其功率高、稳定性能好和快速的充放电能力,在储能设备领域受到 广泛关注。采用水热法结合电沉积法合成花状MgCo2O4@CoMn 层状双氢氧化物(LDH)复合材 料。得益于MgCo2O4和 CoMn LDH 异质界面间的协同作用,改善了复合材料的电子传输;此外, 低结晶度 CoMn LDH 的成功复合提供了良好的亲水性和活性位点;电化学测试中,复合材料在 4.5 mg/cm2的高负载量下,表现出 1 501.8 F/g 的高比电容,并且在 20 A/g 的电流密度下循环 3 000次后,比电容保持率为82.98%,展示了其优异的循环稳定性。结果表明 MgCo2O4@CoMn LDH复合材料可用作电化学储能的电极材料之一。

关键词: 层状双氢氧化物, MgCo2O4, 电沉积法, 复合材料, 超级电容器

Abstract: Due to their high power,good stability performance,and fast charging and discharging capabilities,supercapacitors (SCs) have attracted much attention in energy storage devices. In this study,we synthesized flower-like MgCo2O4@CoMn layer-double hydroxide (LDH) composites by hydrothermal method and electrodeposition. Due to the synergistic interaction between the heterogeneous interfaces of MgCo2O4 and CoMn LDH,the electron transport of the composites was improved. In addition,the successful composite of CoMn LDH with low crystallinity provided good hydrophilicity and active sites. In electrochemical tests,the composite material exhibited a high specific capacity of 1 501.8 F/g at a high loading of 4.5 mg/cm2. At a current density of 20 A/g,the capacity retention was 82. 98% after 3 000 cycles. It turned out that the composite material demonstrated excellent cycling stability. The resultus show that the MgCo2O4@CoMn LDH composite can be used as one of the electrode materials for electrochemical energy storage.

Key words: porous carbon;doped mechanism;heteroatom-doped;adsorption;catalysis;energy-storage

中图分类号: