[1] 刘斌.同种异体骨的易感疾病风险与控制[J].中国矫形外科杂志,2009,17(15)1164-1166. [2] Ma P X.Scaffolds for tissue fabrication[J].Materials Today,2004,730-40. [3] 顾伟,刘雷良,左保齐.天然生物可降解材料在生物医学领域中的运用[J].苏州大学学报工科版,2006,26(1)117-119. [4] Zhang R,Ma P X.Poly(alpha-hydroxyl acids)/hydroxyl apatite porous composites for bone tissue engineeringI Preparation and morphology[J].J Biomed Mater Res,1999,44446-455. [5] Zhang R, Ma P X.Degradation behavior of porous poly(a-hydroxyl acids)/hydroxyl apatite composite scaffolds[J].Polym Prepr,2000,411618-1619. [6] Zhang R, Ma P X.The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams[J].Biomaterials,2006,273708-3715. [7] Bryant S J,Bender R J,Durand K L,et al.Encapsulating chondrocytes in degrading PEG hydrogels with high modulus engineering gel structural changes to facilitate cartilaginous tissue production[J].Biotechnol Bioeng,2004,86747-755. [8] Han D K, Hubbell J A.Synthesis of polymer network scaffolds from L-lactide and poly(ethylene glycol) and their interaction with cells[J].Macromolecules,1997, 306077-6083. [9] West J L, Hubbell J A.Polymeric biomaterials with degradation sites for proteases involved in cell migration[J].Macromolecules,1999,32241-244. [10] Oh S H,Park S C,Kim H K,et al.Degradation behavior of 3D porous polydioxanone-b-polycaprolactone scaffolds fabricated using the melt-molding particulate-leaching method[J].J Biomater Sci Polym Ed,2011,22225-237. [11] Rose F R,Cyster L A,Grant D M,et al.In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel[J].Biomaterials,2004,255507-5514. [12] O′Brien F J,Harley B A,Yannas I V,et al.The effect of pore size on cell adhesion in collagen-GAG scaffolds[J].Biomaterials,2005,26433-441. [13] Morton W J.Method of dispersing fluids[J].US patent,1902,7(5)691. [14] Li W J, Laurencin C T, Caterson E J, et al.Electrospun nanofibrous structurea novel scaffold for tissue engineering[J].Journal of Biomedical Materials Research,2002,60613-621. [15] Reneker D H, Chun I.Nanometre diameter fibres of polymer, produced by electrospinning[J].Nanotechnology,1996,7216-223. [16] Srouji S, Kizhner T, Suss-Tobi E, et al.3-D nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold[J].J Mater Sci Mater Med,2008,191249-1255. [17] Moroni L, Schotel R, Hamaan D, et al.3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation[J].Adv Funct Mater,2008,1853-60. [18] Zhang S.Emerging biological materials through molecular self-assembly[J].Biotechnol Adv,2002,20321-339. [19] Beniash E,Hartgerink J D,Storrie H,et al.Selfassembling peptide amphiphile nanofiber matrices for cell entrapment[J].Acta Biomater,2005,1(4)387-397. [20] Hartgerink J D, Beniash E, Stupp S I.Self-assembly and mineralization of peptide-amphiphile nanofibers[J].Science,2001,2941684-1688. [21] Ma P X.Biomimetic materials for tissue engineering[J].Advanced Drug Delivery Reviews,2008,60184-198. [22] Wei G B, Ma P X.Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres[J].Journal of Biomedical Materials ResearchPart A,2006,78A(2)306-315. [23] Zhang R Y,Ma P X.Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures[J].Journal of Biomedical Materials Research,2000,52430-438. [24] Shin H,Jo S,Mikos A G.Biomimetic materials for tissue engineering[J].Biomaterials,2003,24(24)4353-4364. [25] Liu X H,Smith L A,Wei G B,et al.Surface engineering of nano-fibrous poly(L-lactic acid) scaffolds via self-assembly technique for bone tissue engineering[J].Journal of Biomedical Nanotechnology,2005,1(1)54-60. [26] Kadler K.Matrix loading assembly of extracellular matrix collagen fibrils during embryogenesis[J].Birth Defects Res C Embryo Today,2004,721-11. [27] Woo K M, Chen V J, Ma P X.Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment[J].J Biomed Mater Res A,2003,67(2)531-537. [28] Woo K M,Jun J H,Chen V J,et al.Nanofibrous scaffolding promotes osteoblast differentiation and biomeneralization[J].Biomaterials,2007,28335-343. [29] Schindler M, Ahmed I, Kamal J, et al.A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture[J].Biomaterials,2005,265624-5631. [30] Xu C Y, Inai R, Kotaki M, et al.Aligned biodegradable nanofibrous structure a potential scaffold for blood vessel engineering[J].Biomaterials,2004,25877-886. [31] Yang F, Xu C Y, Kotaki M, et al.Characterization of Neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffolds[J].J Biomater Scit Polymer Edn,2004,15(12)1483-1497. [32] Nur-E-Kamal A, Ahmed I, Kamal J, et al.Three-demensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells[J].Stem Cells,2006,24426-433. [33] Storrie H,Guler M O,Abu-Amara S N,et al.Supramole- cular crafting of cell adhesion[J].Biomaterials,2007, 284608-4618. [34] Chen V J, Smith L A, Ma P X.Bone regeneration on computer-designed nano-fibrous scaffolds[J].Biomaterials,2006,273973-3979. [35] Woo K M, Jun J H, Chen V J, et al.Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization[J].Biomaterials,2007,28335-343. [36] Li W, Tuli R, Huang X, et al.Multilineage differentiation of human mesnchymal stem cells in a three-dimensional nanofibrous scaffold[J].Biomaterials,2005,265158-5166. [37] Shin M, Yoshimoto H, Vacanti J P.In vivo bone tissue engineering using mesenchymal stem cellson a novel electrospun nanofibrous scaffold[J].Tissue Engineering,2004,10(12)33-41. |