江汉大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (1): 80-90.doi: 10.16389/j.cnki.cn42-1737/n.2024.01.009

• 人工智能与机械自动化 • 上一篇    

小样本条件下的公路建设项目场景识别与安全预警

周志宇1,王天一1,左治江2,冀 虹1,杨 刚3,任明龙4,高 智*1   

  1. 1. 武汉大学 遥感信息工程学院,湖北 武汉 430079;2. 江汉大学 智能制造学院,湖北 武汉 430056; 3. 中交路桥建设有限公司,北京 101107;4. 广州市高速公路有限公司,广东 广州 510030
  • 发布日期:2024-02-28
  • 通讯作者: 高智
  • 作者简介:周志宇(2001— ),男,研究方向:计算机视觉、深度学习、同步定位与建图。*通信作者:高 智(1981— ),男,教授,博士生导师,研究方向:人工智能与计算机视觉、摄影测量与遥感。
  • 基金资助:
    国家自然科学基金重大项目(42192580,42192583)

Scene Recognition and Safety Precaution of Highway Construction Projects Under Few-shot Conditions

ZHOU Zhiyu1,WANG Tianyi1,ZUO Zhijiang2,JI Hong1,YANG Gang3,REN Minglong4,GAO Zhi*1   

  1. 1. School of Remote Sensing Information Engineering,Wuhan University,Wuhan 430079,Hubei,China; 2. School of Intelligent Manufacturing,Jianghan University,Wuhan 450056,Hubei,China; 3. Road & Bridge International Co. ,Ltd. ,Beijing 101107,China; 4. Guangzhou Expressway Co. ,Ltd. ,Guangzhou 510030,Guangdong,China
  • Published:2024-02-28
  • Contact: GAO Zhi

摘要: 由于具有系统性、完整性的公路样本数据集的短缺,使得传统深度学习范式难以满足应用需求。针对该问题,提出一种基于小样本的双阶段场景识别框架,并以容易获取的遥感数据进行训练测试,最后应用于公路场景中。小样本学习首先从大规模基类数据集中获取先验知识、学习基础模型,再将学习结果泛化至训练时未出现的或训练样本很少的新类别中。在框架的第一阶段,引入多任务模型,从两个辅助任务中学习跨语义类的内在特征;在第二阶段,基于标签传播实现对有标签和无标签数据的联合预测。实验表明,该场景识别方法取得了 80. 58% 的分类精度,相较于 SIB 和 CAN+T 分别提升了 13. 24% 和 10. 69%,在测试数据集中取得了 69. 37% 的分类精度,可用于各类实际公路建设项目中工程车辆行驶安全的场景识别与智能预警任务。

关键词: 小样本场景分类, 公路建设, 安全巡检, 遥感影像

Abstract: The shortage of systematic and complete highway sample datasets makes it difficult for the traditional deep learning paradigm to meet the application requirements.Therefore,to address this problem,this paper proposed a two-stage scene recognition framework under small-sample conditions,with easily accessible remote sensing data for training tests,and then finally applied to highway scenes. The small-sample learning started with obtaining a priori knowledge from a large-scale base class dataset,learning the base model,and then generalizing the model to new classes that did not appear in the training process or had few training samples. In the first stage of the framework,we introduced a multi- task model to learn the intrinsic features across semantic classes from two auxiliary tasks,and then in the second stage,we implemented joint prediction of labeled and unlabeled data based on label propagation. Extensive experiments showed that the scene recognition method proposed in this article achieved a classification accuracy of 80. 58%,which was an improvement of 13. 24% and 10. 69% compared to SIB and CAN+T,respectively. It performed excellently in the test dataset with a classification accuracy of 69. 37%. This method can be used for scene recognition and intelligent warning tasks for engineering vehicle driving safety in various highway construction projects.

Key words: few-shot scene classification, road construction, safety inspection, remote sensing image

中图分类号: