江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (1): 27-32.doi: 10.16389/j.cnki.cn42-1737/n.2022.01.004

• 数学 • 上一篇    下一篇

黎曼流形上三个微分算子各自在共形度量下的关系式

田大平,汪敏   

  1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 发布日期:2022-02-22
  • 作者简介:田大平(1975— ),男,讲师,博士,研究方向:微分几何与几何分析。

Respective Relational Expression of Three Differential Operators on Riemannian Manifolds Under the Conformal Riemannian Metric

TIAN Daping,WANG Min   

  1. School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2022-02-22

摘要: 散度算子、梯度算子和Laplace 算子不仅是微分几何中非常重要的微分算子,而且在数学的其他分支学科中也扮演着举足轻重的角色。从黎曼几何的角度出发,根据黎曼流形上的散度算子、梯度算子、Laplace 算子以及共形的黎曼度量的定义,在黎曼流形的局部坐标系下,通过直接计算,分别推导出散度算子、梯度算子和Laplace 算子各自在共形的黎曼度量下的关系式。

关键词: 黎曼流形, 散度算子, 梯度算子, Laplace 算子, 共形黎曼度量

Abstract: Divergence operators, gradient operators and Laplacian operators are critical differential operators in differential geometry and play an essential role in other branches of mathematics. In this paper,from the perspective of Riemannian geometry,according to the definitions of the divergence operator, gradient operator, Laplacian operator and the conformal Riemannian metric on Riemannian manifolds,in the local coordinate system of Riemannian manifolds,we derive the relational expressions of the divergence operator,gradient operator and Laplacian operator under the conformal Riemannian metric respectively through direct calculations.

Key words: Riemannian manifolds, divergence operator, gradient operator, Laplacian operator, conformal Riemannian metric

中图分类号: