江汉大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (2): 29-34.doi: 10.16389/j.cnki.cn42-1737/n.2021.02.004

• 数学 • 上一篇    下一篇

两种特殊坐标系下Laplace 算子的推导

田大平,汪敏   

  1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 发布日期:2021-03-19
  • 作者简介:田大平(1975— ),男,讲师,博士,研究方向:微分几何与几何分析。

The Deduction of the Expressions of Laplacian Operator in Two Special Coordinate Systems

TIAN Daping,WANG Min   

  1. School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2021-03-19

摘要: 根据黎曼流形上Laplace 算子的定义式,将散度算子作用于黎曼流形上的光滑函数的梯度场,从而得到一个二阶椭圆微分算子。首先将黎曼流形特殊成欧氏空间,通过计算直接推导出三维欧氏空间中直角坐标系下的Laplace 算子的表达式,然后应用欧氏空间中直角坐标系与柱坐标系以及球坐标系之间的变换公式,通过计算推导出Laplace 算子分别在柱坐标系以及球坐标系下的具体表达式。

关键词: Laplace 算子, 柱坐标系, 球坐标系

Abstract: According to the definition of the Laplacian operator on Riemannian manifolds,it is a second-order elliptic differential operator obtained by applying the divergence operator to the gradient field of the smooth function on Riemannian manifolds. In this paper,we first specialize Riemannian manifolds into Euclidean spaces, and derive the expression of Laplacian operator in the rectangular coordinate system in the three-dimensional Euclidean space through calculation. And then, by applying transformation formulas between the rectangular coordinate system and the cylindrical coordinate system or the spherical coordinate system,we derive respectively the specific expressions of Laplacian operator in cylindrical and spherical coordinate systems in Euclidean space.

Key words: Laplacian operator, cylindrical coordinate system, spherical coordinate system

中图分类号: