江汉大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (1): 55-64.doi: 10.16389/j.cnki.cn42-1737/n.2020.01.008

• 农业信息工程 • 上一篇    下一篇

基于无人机图像的小麦灌浆期叶片氮含量估算

王梦玄,沙正霞,杨宝华*,高远   

  1. 安徽农业大学 信息与计算机学院,安徽 合肥 230036
  • 发布日期:2020-01-20
  • 通讯作者: 杨宝华
  • 作者简介:王梦玄(1995— ),男,硕士生,研究方向:农业工程与信息技术。
  • 基金资助:
    安徽省自然科学基金资助项目(1808085MF195);国家重点研发计划资助项目(2016YFD0300608);安徽省高校自然科学研究重点项目(KJ2016A837);农业部农业物联网技术集成与应用重点实验室开放基金资助项目(2016KL02)

Estimation of Leaf Nitrogen Content of Wheat Based on UAV Image at Filling Stage

WANG Mengxuan,SHA Zhengxia,YANG Baohua*,GAO Yuan   

  1. School of Information and Computer,Anhui Agricultural University,Hefei 230036,Anhui,China
  • Published:2020-01-20
  • Contact: YANG Baohua

摘要: 氮含量是小麦的重要营养指标之一。传统方法监测不同生长时期的小麦叶片氮含量的过程繁杂且具有破坏性,针对该问题提出了利用无人机遥感图像快速预测小麦氮含量的方法。利用小麦灌浆时期获取的无人机图像,基于改进的加权平均算法进行拼接和融合。该方法可有效消除拼接痕迹和差异,从而有效提取小麦特征,包括RGB 特征、HIS 特征和植被指数(VIs),利用这些特征及它们的组合构建支持向量回归模型。实验结果表明,基于HIS 特征+ VIs 组合的模型预测精度最高,其验证集决定系数(R2)为0. 774,均方根误差(RMSE)为0. 363 7。该结果说明基于无人机监测小麦灌浆期的营养可行,这也为小麦田间管理提供了技术支撑。

关键词: 小麦灌浆期, 无人机, 支持向量回归, 氮含量

Abstract: Nitrogen content is one of the important nutritional indicators of wheat. The traditional method of monitoring nitrogen content of wheat leaves in different growth stages was complicated and destructive. Therefore, a method for rapid prediction of nitrogen content in wheat using remote sensing images of unmanned aerial vehicle (UAV) was proposed in this study. The UAV images acquired during the wheat filling period were used for splicing and fusion based on the improved weighted average algorithm,which could effectively eliminate splicing marks and differences. Thus,wheat features were effective extracted,including RGB features,HIS features and vegetation indices(VIs),which were used to construct support vector regression(SVR)model. The experimental results showed that the accuracy of the HIS-based+VIs combination model was the highest. The validation set coefficient (R2) was 0. 774 and the root mean square error(RMSE) was 0. 363 7. The results indicated that the monitoring method based on UAV for the nutrition of wheat during grain filling was feasible, which also provided technical support for the management of wheat field.

Key words: filling stage of wheat, unmanned aerial vehicle(UAV), support vector regression, nitrogen content

中图分类号: