江汉大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (6): 513-517.doi: 10.16389/j.cnki.cn42-1737/n.2015.06.006

• 数学 • 上一篇    下一篇

常利率带干扰的两类相关理赔风险模型

贺小丽1,余国胜*1,姚钲1,姚春临1,陈华斌2   

  1. 1. 江汉大学 数学与计算机科学学院,湖北 武汉 430056;2. 南昌大学 理学院,江西 南昌 330031
  • 出版日期:2015-12-28 发布日期:2016-01-12
  • 通讯作者: 余国胜
  • 作者简介:贺小丽(1994—),女,研究方向:金融数学。
  • 基金资助:
    国家自然科学基金资助项目(11401292);江汉大学博士科研启动经费资助项目(2011021)

A Diffusion Risk Model with Two Dependent Classes of Risk Processes Under Constant Interest Rate

HE Xiaoli1,YU Guosheng*1,YAO Zheng1,YAO Chunlin1,CHEN Huabin2   

  1. 1. School of Mathematics and Computer Science,Jianghan University,Wuhan 430056,Hubei,China;2. School of Science,Nanchang University,Nanchang 330031,Jiangxi,China
  • Online:2015-12-28 Published:2016-01-12
  • Contact: YU Guosheng
  • About author:余国胜(1980—),男,讲师,博士,研究方向:随机动力系统、金融数学。E-mail:guosyujianghanun@126.com

摘要: 考虑了保费收取为Poisson-Geometric过程,常利率环境条件下带干扰的两类相关理赔风险过程,把相关的两类理赔计数过程转换为两个独立的Poisson-Geometric过程和推广的Erlang( n )过程,并给出其折现罚金函数所满足的微积分方程。

关键词: 破产概率, Poisson-Geometric过程, 推广的Erlang( n )过程, 带干扰, 折现罚金函数

Abstract: A diffusion risk model which premium obeyed the Poisson- Geometric process with two dependent classes of risk processes under constant interest rate was considered,the correlated two claims in the counting process were transformed through model into independent Poisson- Geometric and generalized Erlang(n)processes. Integro-differential equations were obtained.

Key words: ruin probability, Poisson-Geometric process, generalized Erlang(n)processes, diffusion, discounted penalty function

中图分类号: