江汉学术 ›› 2025, Vol. 44 ›› Issue (1): 83-94.doi: 10.16388/j.cnki.cn42-1843/c.2025.01.008

• 经济管理 • 上一篇    

企业绿色技术创新的多维度动因与关键因素——基于机器学习的证据

彭 颖1,2,张子夜1   

  1. 1江汉大学 商学院,武汉 430056;2武汉城市圈制造业发展研究中心,武汉 430056
  • 收稿日期:2024-05-16 出版日期:2025-02-15 发布日期:2025-01-08
  • 作者简介:彭 颖,女,湖北武汉人,江汉大学商学院讲师,武汉城市圈制造业发展研究中心研究人员,博士,E-mail:309661942@qq.com;张子夜,女,安徽淮北人,江汉大学商学院硕士生,E-mail:2732288610@qq.com。

Multidimensional Drivers and Key Factors of Green Technological Innovation of Enterprise:Evidence Based on Machine Learning

PENG Ying1,2,ZHANG Ziye1   

  1. 1Business School,Jianghan University,Wuhan 430056;2Research Center for Development of Manufacturing Industry in Wuhan City Cluster,Wuhan 430056
  • Received:2024-05-16 Online:2025-02-15 Published:2025-01-08

摘要: 绿色技术创新是推动绿色低碳发展的关键,它综合考虑了经济和环境的双重效益。以2011—2020年A 股上市重污染企业为样本,采用机器学习中的参数方法、非参数方法和集成学习方 法,可探讨多维度的绿色技术创新动因对绿色技术创新行为预测能力的差异,从而识别出影响企业进行绿色技术创新的主要动因,并找出预测能力最强的特征。研究发现:与数字化发展动因和内部治理动因相比,企业绿色技术创新行为主要受外部监督动因驱动;集成学习方法对绿色技术创新行为的预测能力优于参数与非参数研究方法,其中支持向量机具有最强的解释能力和最高的预测精度;在多维度动因特征中,数字金融、企业社会责任和政府环保补助对绿色技术创新行为的预测效果最佳。运用机器学习方法可有效识别企业绿色技术创新的关键因素,而且对企业自身可持续发展、加强生态文明建设具有启示意义。

关键词: 绿色技术创新, 机器学习, 集成学习, 生态文明建设

Abstract: Green technological innovation is key to the green and low-carbon development,which takes into account both economic and environmental benefits. Heavy polluting A-share listed enterprises from 2011 to 2020 are sampled;the capacity of different multi-dimensional green technological innovation motivations in predicting green technology innovation behavior is explored by using the parametric method, non-parametric method,and ensemble learning method in machine learning. The purpose is to identify the main motivation affecting enterprises to carry out green technology innovation and identify features of the most predictive quality. The results show that compared with the digital development motivation and the internal governance motivation,the external supervision motivation is the main driver for the green technology innovation behavior of enterprises;the ability of ensemble learning method to predict green technology innovation behavior is better than that of parametric and non-parametric research methods,and the support vector machine has the strongest interpretation ability and the highest prediction accuracy;and among the multi-dimensional motivation features,digital finance,corporate social responsibility,and government environmental protection subsidies have the best predictive effect on green technology innovation behavior. Applying the machine learning method can effectively identify the key factors of green technology innovation in enterprises,and is enlightening for the sustainable development of enterprises and the construction of ecological civilization.

Key words: green technological innovation, machine learning, ensemble learning, construction of ecological civilization

中图分类号: