江汉大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (2): 13-15.

• 数学 • 上一篇    下一篇

一类Landau-Lifshitz型泛函的极小元的渐近性态

占德胜   

  1. 马鞍山职业技术学院,安徽马鞍山243031
  • 出版日期:2012-04-20 发布日期:2013-11-07
  • 作者简介:占德胜(1968—),男,副教授,硕士,研究方向:应用数学。
  • 基金资助:
    安徽省教育厅重点研究项目(20101310);安徽省高等学校省级优秀青年人才基金项目(2010SQRL223

Asymptotic Behavior of Mininmizers for a Class ofLandau-Lifshitz Functions

ZHAN De-sheng   

  1. Maanshan Technical College,Maanshan 243031,Anhui,China
  • Online:2012-04-20 Published:2013-11-07

摘要: 在函数类空间W={u(x)=[sinf(r)eidθ,cosf(r)]∈H1(B,S2);u|?坠B=g}中,研究Landau-Lifshitz型泛函Eε(u,B)=u2dx+udx的径向极小元uε的渐近性态。通过建立径向极小元uε的H1局部收敛性,给出了u收敛到0的速度估计。

关键词: 径向极小元, 渐近性态, Landau-Lifshitz型泛函

Abstract: In this dissertation, Asymptotic behavior of the radial minimizer uε of the Landau-Lifshitz function Eε(u, B)=u2dx+udx , in W={u(x)=[sin f(r)eidθ, cosf(r)]∈H1(B,S2); u|?坠B=g}; u|?坠B=g} has been studied. And several estimates of the convergence rate of u to 0 have been proposed by establishing the local convergence of the radial minimizer uε in the H1 sense.

Key words: radial minimizer, symptotic behavior, Landau-Lifshitz functions

中图分类号: