江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (3): 46-56.doi: 10.16389/j.cnki.cn42-1737/n.2022.03.006

• 智能控制 • 上一篇    下一篇

自适应无色卡尔曼滤波算法的设计及其在机器人状态参数估计中的应用

徐伟,蔡忠贸,汪塬皓,何亚妮,罗锦瑞,郭正阳,曹俊杰,刘晓东,屈斌文   

  1. 江汉大学 工程训练中心,湖北 武汉 430056
  • 发布日期:2022-06-24
  • 作者简介:徐伟(1977— ),男,高级实验师,硕士,研究方向:机器人、神经网络、深度学习等。
  • 基金资助:
    国家自然科学基金资助项目(61672022);2021 年江汉大学校级重点学生科研项目(2021ZD160)

An Adaptive Unscented Kalman Filter Algorithm Design and Its Application in Robot State Parameter Estimation

XU Wei,CAI Zhongmao,WANG Yuanhao,HE Yani,LUO Jinrui,GUO Zhengyang,CAO Junjie,LIU Xiaodong,QU Binwen   

  1. Engineering Training Center,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2022-06-24

摘要: 针对机器人系统的状态参数不能完全依靠离线模式进行预测估计的问题,基于麻省理工学院提出的MIT 规则,设计了一种具有自适应功能的无色卡尔曼滤波算法。该方法以信息方差的实际值与估计值的差作为指标参数,利用梯度下降法更新未知参数实现自适应控制。通过理论分析和实验验证,当系统的噪声统计特性发生变化时,所提出的自适应滤波算法能够自动地调节自身参数,减少系统先验噪声信息对于滤波器性能的影响,有效地提高滤波器的稳定性和估计的准确性。

关键词: 自适应算法, 无色卡尔曼滤波, 机器人, 在线估计, 状态参数

Abstract: Due to the problem that the operating state parameters of the robot system can't be predicted and estimated entirely by the offline identification mode, we designed an adaptive unscented Kalman filter algorithm based on MIT rules. This method took the difference between the actual value and the estimated value of information variance as the index parameter and updated the unknown parameters by the gradient descent method to realize adaptive control. Theoretical analysis and experimental results showed that when the statistical noise characteristics of the system changed,the proposed adaptive filter algorithm could automatically adjust its parameters to reduce the influence of the system's prior noise information on the filter performance. This method effectively improves the stability of the filter and the accuracy of the estimation.

Key words: adaptive algorithm, unscented Kalman filter, robot, online estimation, state parameters

中图分类号: