江汉大学学报(自然科学版) ›› 2022, Vol. 50 ›› Issue (3): 29-35.doi: 10.16389/j.cnki.cn42-1737/n.2022.03.004

• 化学工程 • 上一篇    下一篇

基于RBF 神经网络模型的乙醇偶合制备C4烯烃的工艺条件分析

吴文俊,张智恒,李星辰,胡晓莉*   

  1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 发布日期:2022-06-24
  • 通讯作者: 胡晓莉
  • 作者简介:吴文俊(2001— ),男,研究方向:数学建模。
  • 基金资助:
    国家自然科学基金资助项目(11501251);湖北省自然科学面上基金资助项目(2020CFB538)

Analysis of Process Conditions for the Preparation of C4 Olefins by Ethanol Coupling Based on RBF Neural Network Model

WU Wenjun,ZHANG Zhiheng,LI Xingchen,HU Xiaoli*   

  1. School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China
  • Published:2022-06-24
  • Contact: HU Xiaoli

摘要: C4烯烃作为一种常见的化学材料,被广泛用于生产医药化学品和中间体。在制备C4烯烃的过程中,催化剂组合和温度会影响C4烯烃的选择性和产量。因此,探索制备乙醇偶合C4烯烃的工艺条件具有其重要意义和价值。在这项工作中,根据2021年全国大学生数学建模竞赛问题B中提供的不同催化剂组合和温度的实验基准数据,建立RBF神经网络模型,研究催化剂组合成分和温度对乙醇转化和C4烯烃选择性的影响程度。结果显示,温度对C4烯烃选择性具有强相关性,Co/SiO2和HAP质量对C4烯烃选择性的影响基本相同,Co负载对C4烯烃选择性的影响比乙醇转化率略大,而乙醇进料在C4烯烃选择性与乙醇转化率之间的关联性较弱。

关键词: 催化剂组合与温度, 乙醇转化率, C4烯烃选择性, RBF神经网络

Abstract: C4 olefins are widely used as a common chemical material to produce pharmaceutical chemicals and intermediates. In the preparation process of C4 olefins, the catalyst combination and temperature affect the selectivity and yield of C4 olefins. Hence,exploring the process conditions for preparing ethanol-coupled C4 olefins is essential and valuable. In this work,an RBF neural network model was established to investigate the influence of catalyst combination composition and temperature on ethanol conversion and C4 olefins selectivity based on experimental benchmark data for different catalyst combinations and temperatures provided in Problem B in the Mathematics Competition of Chinese College Students 2021. The results showed that temperature had a strong correlation with C4 olefins selectivity,the mass of Co/SiO2 and HAP had essentially the same effect on C4 olefins selectivity,Co loading had a more significant impact on C4 olefins selectivity than ethanol conversion,and ethanol feed had a weaker correlation with the C4 olefins selectivity and ethanol conversion.

Key words: catalyst combination and temperature, ethanol conversion, C4 olefins selectivity, RBF neural network

中图分类号: