江汉大学学报(自然科学版) ›› 2015, Vol. 43 ›› Issue (1): 41-50.

• • 上一篇    下一篇

基于改进布谷鸟搜索的人工神经网络及其性能仿真

倪百秀,张翠翠,周本达   

  1. 皖西学院 金融与数学学院,安徽 六安 237012
  • 出版日期:2015-02-28 发布日期:2015-03-05
  • 作者简介:倪百秀 (1975—) , 女, 讲师, 硕士, 研究方向: 计算智能与工程优化。
  • 基金资助:
    安徽高校省级自然科学研究项目 (KJ2013B345) ;六安市定向委托皖西学院市级研究项目 (2012LW021)

Artificial Neural Network Based on Improved Cuckoo Search and Its Performance Simulation

NI Baixiu,ZHANG Cuicui,ZHOU Benda   

  1. School of Finance & Mathematics,West Anhui University, Liuan 237012, Anhui, China
  • Online:2015-02-28 Published:2015-03-05

摘要: 布谷鸟搜索 (CS) 算法是一种新型的基于仿生学原理的元启发式算法, 具有很好的全局优化能力, 但其存在后期收敛速度慢、 计算精度不高等不足。通过将交叉熵 (CE) 方法嵌入到CS中构建一种改进的CS算法, 基准测试函数集的测试结果表明改进算法收敛速度和计算精度都有了明显提高。用改进的算法实现对人工神经网络的训练, 实验结果显示新算法训练的神经网络收敛速度更快, 能有效避开局部极小。最后用所建立的人工神经网络对中国人口总量进行了预测。

关键词: 人工神经网络, 布谷鸟搜索 (CS) 算法, 交叉熵 (CE) 方法, 中国人口总量预测

Abstract: Cuckoo search is a novel meta-heuristic algorithm based on bionics. It has good ability to search for global optimum,but suffers from slow searching speed in the last iterations and poor accuracy.The cross-entropy method is embedded into cuckoo search algorithm and an improved cuckoo search algorithm is introduced. The testing results of benchmark functions show the improved algorithm obtains good performance of convergence speed and high accuracy. The proposed algorithm is employed as a new training method for artificial neural network.,and the experimental results show that the proposed algorithm outperforms for training neural networks in terms of converging speed and avoiding local minima. Finally,the artificial neural network with learning algorithm based on the improved algorithm is employed to forecast total population of China.

Key words: artificial neural network, cuckoo search( CS ), cross entropy( CE ), Chinese population forecasting

中图分类号: