江汉大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (5): 418-423.doi: 10.16389/j.cnki.cn42-1737/n.2017.05.006

• 化学与化工 • 上一篇    下一篇

人工神经网络在吡喃酮类化合物生物活性预测中的应用

俞青芬   

  1. 青海民族大学 化学化工学院,青海 西宁 810007
  • 出版日期:2017-10-28 发布日期:2017-10-31
  • 作者简介:俞青芬(1975—),女,教授,硕士,研究方向:有机化学与化学计量学。
  • 基金资助:
    教育部春晖计划资助项目(Z2012103);青海省教育厅自然科学基金资助项目(2012-Z-904)

Application of Artificial Neural Network on Bioactivity Prediction of Pyranones

YU Qingfen   

  1. School of Chemistry and Chemical Engineering,Qinghai Nationelities University,Xining 810007,Qinghai,China
  • Online:2017-10-28 Published:2017-10-31

摘要: 采用Chemoffice 2004 中的MOPAC-PM3 算法对吡喃酮类化合物的量子化学结构参数进行计算,并将筛选后的量化参数作为吡喃酮类化合物的结构描述符。采用分子结构描述符对吡喃酮类化合物进行结构表征和抗人类免疫缺陷病毒(HIV)的活性预测,利用人工神经网络中的径向基网络建立分子结构描述符与生物活性间的相关模型。当sp = 0. 41时,结果显示网络训练集预测均方差MSE几乎为0,而网络仿真预测MSE为0. 006 6,总MSE 为0. 000 7。结果表明径向基人工神经网络具有高数值逼近能力,提高了对吡喃酮类化合物结构的预测精度。

关键词: 人工神经网络, 分子结构描述符, 吡喃酮类化合物, 定量结构活性相关

Abstract: MOPAC-PM3 algorithm in Chemoffice 2004 was used to calculate quantum chemical structure parameters of pyranones,and the quantization parameter selection were used as descriptors of pyranones. With molecular descriptors,the structure of pyranones compounds were characterized and anti human immunodeficiency virus(HIV)activity was predicted. The model on molecular descriptors and biological activity was established with RBF neural network of artificial neural network. When sp= 0. 41,the results showed that the predicting variance of MSE for network training set is nearly 0,and the network simulation and prediction of MSE was 0. 006 6,the total MSE was 0. 000 7. The results showed that the RBF neural network had the feature of high digital approximation,which improved the predition accuracy of structure of pyranones compounds.

Key words: artificial neural network, molecular descriptors, pyranones compounds, quantitative structure-activity relationship

中图分类号: