江汉大学学报(自然科学版) ›› 2012, Vol. 40 ›› Issue (3): 5-8.

• 数学 •    下一篇

2012含两个未知边界的抛物型方程反问题稳定数值算法

汪平   

  1. 金陵科技学院公共基础课部,江苏南京211169
  • 收稿日期:2012-03-28 出版日期:2012-06-20 发布日期:2013-11-07
  • 作者简介:汪平(1980—),男,讲师,硕士,研究方向:微分方程数值解。

A Stable Numerical Algorithm for an Inverse Parabolic Problem withTwo Unknown Boundaries

WANG Ping   

  1. Department of Fundamental Courses,Jinling Institute of Technology,Nanjing 211169,Jiangsu,China
  • Received:2012-03-28 Online:2012-06-20 Published:2013-11-07

摘要: 在物理学中模拟均匀的多孔介质流时会遇到一类一维抛物型方程反问题,该问题由一个含两未知边界条件的抛物型方程以及在某指定内点上测量得到的特定数据条件所构成。为了能够更好地求解该类反问题,本文首先证明解的唯一性,然后给出其离散后的有限差分格式以及该格式下的数值解的稳定性条件,并通过切比雪夫多项式逼近未知函数,利用最小二乘法解出未知项的系数,最后给出数值试验。

关键词: 抛物型方程反问题, 切比雪夫多项式, 最小二乘法, 有限差分格式, 稳定性

Abstract: A one-dimensional inverse parabolic problem can be encounter when we research simulation of homogeneous porous medium flow in physics. The problem consists of a parabolic equation with two conditions which are unknown at the boundaries and a condition which is determined from an over-specified data measured at an interior point. In order to solve this problem, uniqueness of the solution should be proved first, then the problem is discretized and a finite difference scheme is given. Stability conditions for numerical solution to inverse problem are stated. A set of Chebyshev polynomials are approximate to the unknown function and the unknown set of expansion coefficients in unknown function are determined from the Least-squares method. In the last section the paper gives some numerical examples.

Key words: inverse parabolic problem, chebyshev polynomials, least-squares method, difference scheme, stability

中图分类号: