江汉大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (5): 75-86.doi: 10.16389/j.cnki.cn42-1737/n.2023.05.010

• 人工智能 • 上一篇    下一篇

改进人工蜂鸟算法的无线传感器网络部署优化

张 超1 ,杨 忆2   

  1. 1. 宿州职业技术学院 计算机信息系,安徽 宿州 234101; 2. 淮北师范大学 计算机科学与技术学院,安徽 淮北 235000
  • 出版日期:2023-10-26 发布日期:2023-10-26
  • 作者简介:张 超(1980— ),男,副教授,硕士,研究方向:群体智能优化算法及其应用。
  • 基金资助:
    安徽省高校优秀青年人才支持计划重点项目(gxyqZD2019125);安徽省高校自然科学基金重点项目 (2022AH052764,KJ2020A0035);安徽省高等学校省级质量工程项目(2020kfkc577,2020jyxm2226)

Optimization of Wireless Sensor Network Deployment with Improved Artificial Hummingbird Algorithm

ZHANG Chao,YANG Yi   

  1. 1. Department of Computer Information,Suzhou Vocational and Technical College,Suzhou 234101,Anhui,Chi? na;2. College of Computer Science and Technology,Huaibei Normal University,Huaibei 235000,Anhui,China
  • Online:2023-10-26 Published:2023-10-26

摘要: 人工蜂鸟算法在求解高维度复杂优化问题时,易陷入局部极小值,导致算法收敛停滞。 提出一种改进的人工蜂鸟算法(improved artificial hummingbird algorithm,IAHA),并用其优化无 线传感器网络部署。首先对蜂鸟个体和最优蜂鸟之间距离进行正切函数变换,以最优蜂鸟位置 为基准,以变换的距离为飞行尺度,提出一种新的觅食策略。其次,在迁徙觅食阶段,使用柯西分 布对最优蜂鸟信息进行扰动,将扰动结果赋予最差蜂鸟,取代基本人工蜂鸟算法的随机赋值方 法。在 12 个基准函数上的数值实验表明,IAHA 的寻优性能优于 6 种对比算法。在 4 种监测区域 上进行了无线传感器网络部署优化仿真实验,结果表明,IAHA 获得的平均覆盖率高于对比算 法,且传感器分布均匀,适合求解无线传感器网络部署优化问题。

关键词: 人工蜂鸟算法, 无线传感器网络, 柯西分布, 正切变换距离, 覆盖率

Abstract: The artificial hummingbird algorithm is prone to fall into local minima and convergence stagnation when solving high-dimensional complex optimization problems. Therefore,an improved artificial hummingbird algorithm(IAHA)was proposed to optimize wireless sensor network deployment. Firstly,the tangent function transformation of the distance between individual hummingbirds and the optimal hummingbird was performed,and a new foraging strategy was proposed with the optimal hummingbird position as the base and the transformed distance as the flight scale. Secondly,the optimal hummingbird information was perturbed using the Cauchy distribution during the migratory foraging phase,and the perturbation result was assigned to the worst hummingbird,replacing the random assignment method of the original algorithm. Numerical experiments on 12 benchmark functions demonstrated that the IAHA outperformed the six comparison algorithms significantly in terms of finding the best performance. Simulation experiments of wireless sensor network deployment optimization were conducted on four monitoring areas,and the results showed that the average coverage rate obtained by IAHA was higher than that of the comparison algorithm,and the sensors were evenly distributed,which was suitable for solving the wireless sensor network deployment optimization problem.

Key words: artificial hummingbird algorithm, wireless sensor network, Cauchy distribution, tangent transformation distance, coverage rate

中图分类号: