江汉大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (4): 23-28.doi: 10.16389/j.cnki.cn42-1737/n.2023.04.003

• 数学 • 上一篇    

特殊环上模的 Gorenstein 投射性与内射性

李艳午,陈倩倩   

  1. 芜湖职业技术学院 基础教学部,安徽 芜湖 241003
  • 发布日期:2023-08-19
  • 作者简介:李艳午(1975— ),男,教授,硕士,研究方向:环模理论。
  • 基金资助:
    安徽省教育厅自然科学研究重点资助项目(KJ2020A0916,2022AH052207);安徽省教育厅质量 工程教学团队资助项目(2020jxtd281)

Gorenstein Projective and Gorenstein Injective Properties of Modules over Special Rings

LI Yanwu,CHEN Qianqian   

  1. Department of Basic Education,Wuhu Institute of Technology,Wuhu 241003,Anhui,China
  • Published:2023-08-19

摘要: 主要研究了环上模的 Gorenstein 投射性与内射性。首先,在 Artin 环的框架下,利用特殊 环的刻画条件,研究了任意左 R-模是 Gorenstein 投射模与内射模的充要条件。然后,在一般环 下,从右 R-模对自由 R-模和投射模的可嵌入性以及零化子升链条件等方面刻画了环上模的 Gorenstein 投射性与 Gorenstein 内射性。部分地推广了已有文献的结果。

关键词: Gorenstein 投射性, Gorenstein 内射性, QF-环, Artin 环

Abstract: The Gorenstein projective and Gorenstein injective properties of modules over rings were studied. Firstly,under the framework of an Artin ring,the sufficient and necessary conditions for any left R-module to be a Gorenstein projective module and a Gorenstein injective module were discussed by the characterization condition of a special ring. Then,the Gorenstein projective and Gorenstein injective properties of modules over a general ring were described in terms of the embeddability of the right R-module to free Rmodules and projective modules,as well as the zero-dependent lifting chain. The results of the existing literature were partially extended.

Key words: Gorenstein projectivity, lGorenstein injectivity, lQF-ring, Artin ring

中图分类号: