江汉大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (2): 35-42.doi: 10.16389/j.cnki.cn42-1737/n.2021.02.005

• 数学 • 上一篇    下一篇

基于随机波动模型下考虑劳动收入的最优消费投资问题研究

姜奎   

  1. 蚌埠工商学院 基础教学部,安徽 蚌埠 233000
  • 发布日期:2021-03-19
  • 作者简介:姜奎(1990— ),男,助教,硕士,研究方向:金融数学与金融工程。

Study on Optimal Consumption-Portfolio Problem Considering Labor Income Based on Stochastic Volatility Model

JIANG Kui   

  1. Department of Basic Education,Bengbu College of Technology and Business,Bengbu 233000,Anhui,China
  • Published:2021-03-19

摘要: 在随机波动模型框架下研究了投资者带有劳动收入的最优消费和投资问题。首先建立模型,利用随机最优控制理论获得相应的HJB(Hamilton-Jacobi-Bellman)方程;其次考虑幂效用函数,利用分离变量的方法获得最优消费和投资的显式解,即最优消费c*( t ) 和最优投资π*( t ) 的函数表达式。最后通过数值模拟分析了不同市场参数对最优消费投资策略的影响。通过分析表明,当瞬时波动率增加时最优投资比例减少,但消费水平增加;当风险厌恶因子增大时投资者承担投资风险减少,会增加风险资产的投资比例,减少消费支出;当投资者拥有一份劳动收入时,会影响投资者的消费投资决策。

关键词: 随机波动, 劳动收入, 最优消费投资, 幂效用函数, HJB(Hamilton-Jacobi-Bellman)方程

Abstract: This paper studies the optimal consumption and portfolio of investors with labor income under the framework of the stochastic volatility model. After the model is established,the HJB (Hamilton-Jacobi-Bellman) equation is obtained by applying the stochastic optimal control theory;secondly,the power utility function is considered and the explicit solution of optimal consumption-portfolio is obtained by separating variables,that is,the functional expressions of optimal consumption c*(t)and investment strategy π*(t). Finally,the effect of different market parameters on the optimal consumption-portfolio strategy is analyzed through numerical simulation. The result shows that when the instantaneous volatility increases,the optimal investment proportion decreases,but the consumption level increases;when the risk aversion factor increases,investors bear less investment risk,which will increase the investment proportion of risk assets and reduce consumption expenditure;when the investor has a labor income,it affects the investor's consumption-portfolio decision.

Key words: stochastic volatility, labor income, optimal consumption-portfolio, power utility function, HJB(Hamilton-Jacobi-Bellman)equation

中图分类号: