江汉大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (2): 109-119.doi: 10.16389/j.cnki.cn42-1737/n.2018.02.002

• 计算机科学 • 上一篇    下一篇

基于Morlet小波变异的粒子群优化算法

张超   

  1. 宿州职业技术学院 计算机信息系,安徽 宿州 234101
  • 出版日期:2018-04-28 发布日期:2018-04-12
  • 作者简介:张超(1980—),男,讲师,硕士,研究方向:智能计算、数据挖掘技术。
  • 基金资助:
    安徽省高校省级自然科学基金重点项目(KJ2016A781,KJ2016A778);安徽省高校省级质量工程项目(2015jyxm512)

A Particle Swarm Optimization Algorithm Based on Morlet Wavelet Mutation

ZHANG Chao   

  1. Department of Computer Information, Suzhou Vocational and Technological College, Suzhou 234101, Anhui, China
  • Online:2018-04-28 Published:2018-04-12

摘要: 针对粒子群优化算法易陷入局部极值,收敛精度不高的缺陷,提出一种基于Morlet小波变异的改进算法。改进算法对组成每代全局极值的各维度实施小波扰动,并将扰动结果作为以一定概率被选中粒子的新位置,充分利用全局极值的优势信息引导粒子快速向最优解靠近,通过小波函数的微调特征帮助粒子跳出局部极值。在12 个经典测试函数上的仿真实验结果表明,改进算法的寻优性能较SPSO、CLPSO、DEOPSO、HPSOWM算法有显著提高,适合于求解函数优化问题。

关键词: 粒子群优化算法, Morlet小波, 收敛速度, 收敛精度, 时间复杂度

Abstract: A particle swarm optimization algorithm based on Morlet wavelet mutation was presented to overcome the problems of low convergence precision and easily falling into local extremum. Morlet mutation operation was implemented for each dimension of global extremum,the mutation results were used as new positions of particles, which was selected in certain probability. This strategy made full use of the advantage information of global extremum to guide the particle to approach the optimal solution quickly. At the same time, the fine tuning feature of wavelet function helped the particle jumping out of the local extremum. The simulation experiments on 12 classical test functions showed that the improved algorithm had better performance than SPSO, CLPSO, DEOPSO and HPSOWM algorithms and was suitable for solving function optimization problems.

Key words: particle swarm optimization algorithm, Morlet wavelet, convergence speed, convergence precision;time complexity

中图分类号: