江汉大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (3): 246-251.doi: 10.16389/j.cnki.cn42-1737/n.2019.03.009

• 计算机科学与信息技术 • 上一篇    下一篇

基于卷积神经网络的带遮蔽人脸识别

徐迅a,陶俊*a,吴瑰b   

  1. 江汉大学 a. 数学与计算机科学学院;b. 工程训练中心,湖北 武汉 430056
  • 出版日期:2019-06-28 发布日期:2019-05-29
  • 通讯作者: 陶俊
  • 作者简介:徐迅(1990—),男,硕士生,研究方向:深度学习、计算机视觉。
  • 基金资助:
    江汉大学硕士研究生培养基金资助项目(301004310001)

Occluded Face Recognition Based on Convolutional Neural Network

XU Xuna,TAO Jun*a,WU Guib   

  1. a. School of Mathematics and Computer Science;b. Engineering Training Center,Jianghan University,Wuhan 430056,Hubei,China
  • Online:2019-06-28 Published:2019-05-29
  • Contact: TAO Jun

摘要: 基于卷积神经网络Inception-ResNet-v1 模型进行训练与学习,实现了在添加遮挡干扰因素下的人脸识别。将图像嵌入到d 维度的欧几里得空间,采用Triplet Loss 作为损失函数,直接学习特征间的可分性。选取LFW(labeled faces in wild)数据集和摄像头采集的人脸图片制作训练集和测试集。结果表明,模型在眼部被遮挡的情况下识别率为98. 8%,在嘴部被遮挡的情况下识别率为98. 6%,在眼部和嘴部同时被遮挡的情况下识别率为96. 9%。模型在遮挡率为20% ~ 30%时,识别率能够达到98. 2%。从实验结果可以得出,模型在一定遮挡的情况下能得到较好的识别效果。

关键词: 卷积神经网络, 三元组损失函数, 机器学习, 人脸识别

Abstract: In this paper,based on the convolutional neural network Inception-ResNet-v1 model,the training and learning were carried out to realize occluded face recognition. The model method was to embed the image into the Euclidean space of d dimension,and used Triplet Loss as the loss function to directly learn the separability among features. The experiments were conducted with the LFW (labeled faces in wild)data set and the face images collected by the camera. The results showed that the recognition rates of the model were 98. 8% in the case of eyes occlusion,98. 6% in the case of mouth occlusion and 96. 9% in the case of eyes and mouth both occlusion. The recognition rate was up to 98. 2% when the occlusion rate was 20%-30%. It can be concluded from the experimental results that the model can obtain better recognition results under certain occlusion conditions.

Key words: convolutional neural network, triplet loss function, machine learning, face recognition

中图分类号: