江汉大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (3): 86-96.doi: 10.16389/j.cnki.cn42-1737/n.2025.03.010

• 人工智能 • 上一篇    

基于曲线估计和注意力特征融合的单幅图像去雾网络

谢 承1,刘 威*2   

  1. 1. 咸宁职业技术学院 工学院,湖北 咸宁 437100; 2. 武汉工程大学 计算机科学与工程学院,湖北 武汉 430205
  • 发布日期:2025-06-30
  • 通讯作者: 刘 威
  • 作者简介:谢 承(1989—),男,副教授,研究方向:工业自动化,图像处理。
  • 基金资助:
    湖北省科技计划项目(2021BLB172)

Single-image Defogging Network Based on Curve Estimation and Attentional Feature Fusion

XIE Cheng,LIU Wei   

  1. 1. School of Engineering,Xianning Vocational Technical College,Xianning 437100,Hubei,China; 2. School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,Hubei,China
  • Published:2025-06-30
  • Contact: LIU Wei

摘要: 针对大多数基于端到端学习的单幅图像去雾算法模型生成质量差及对比度低等问题,提 出一种基于曲线估计和注意力特征融合的单幅图像去雾网络。该网络主要包括两个模块:曲线 特征估计模块和去雾模块。在曲线估计模块中设计了一个编解码网络提取雾天图像中的曲线特 征图,并通过一个简单的二次曲线对雾天图像进行曝光增强;在去雾模块中引入空间和通道注意 力机制分别自适应地调整不同空间位置和通道的重要性,提高模型对不同位置的感知能力,从而 提升模型的性能和泛化能力。实验结果表明,与其他去雾算法相比,所提出的算法在有参考评价 指标PSNR和SSIM上以及无参考评价指标FADE和NIQE上均表现较好。

关键词: 图像去雾, 曲线估计, 曝光增强, 注意力机制

Abstract: A single-image defogging network based on curve estimation and attention feature fusion was proposed to address the problems of poor generation quality and low contrast of most single-image defogging algorithm models based on end-to-end learning. The proposed model mainly consisted of the curve feature estimation module and the defogging module. In the curve estimation module,a codec network was designed to extract the curve feature map in the foggy image,and a simple quadratic curve was designed to enhance the exposure of the foggy image. In the defogging module,we improved the model's performance and generalization ability by introducing spatial and channel attention mechanisms to adaptively adjust the importance of different spatial locations and channels, respectively,to improve the model's perception of different locations. The experimental results showed that the proposed method performed better than other defogging algorithms on both PSNR and SSIM with reference evaluation metrics and FADE and NIQE without reference evaluation metrics.

Key words: image defogging, curve estimation, exposure enhancement, attention mechanism

中图分类号: