江汉大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (3): 77-85.doi: 10.16389/j.cnki.cn42-1737/n.2025.03.009

• 人工智能 • 上一篇    

基于SimAM-ResNet18的苹果病害叶片分类研究

吴文俊,陶 俊*,隗一凡,侯顺智,袁冬华   

  1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 发布日期:2025-06-30
  • 通讯作者: 陶 俊
  • 作者简介:吴文俊(2001—),男,硕士生,研究方向:深度学习与计算机视觉。

Apple Disease Leaf Classification Based on SimAM-ResNet18

WUWenjun,TAO Jun,WEI Yifan,HOU Shunzhi,YUAN Donghua   

  1. School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China)
  • Published:2025-06-30
  • Contact: TAO Jun

摘要: 苹果病害叶片分类识别对于苹果种植业的病害监测和防治具有重要意义。针对苹果病 害叶片分类识别的问题,提出了一种基于SimAM注意力机制的ResNet模型。该模型通过迁移 学习和数据增强操作,结合SimAM注意力模块、Swish激活函数和熵权-FocalLoss损失函数, 提高了对样本分布不均的苹果病害叶片的准确识别能力。实验结果显示,改进后的SimAM ResNet18 模型在测试集上实现了94.68%的准确率,相较于基准网络ResNet18提高了2.89%。 与其他经典的卷积分类模型AlexNet、VGG16和GoogLeNet相比,该模型的准确率提高了 7. 02%、5. 25% 和4.31%。研究结果表明,基于SimAM注意力机制的ResNet模型在样本分布不 均的苹果病害叶片分类识别上具有较高的潜力。

关键词: 苹果病害叶片, 图像分类, 迁移学习, SimAM注意力机制, ResNet18

Abstract: Apple disease leaf classification and recognition are significant for disease monitoring and control improvement in apple plantations. Aiming at the problem of apple disease leaf classification and recognition,this paper proposed a ResNet model based on the SimAM attention mechanism. The model combined the SimAM attention module,Swish activation function,and entropy weight Focal Loss function through migration learning and data enhancement operations to improve the accurate recognition of apple disease leaves with uneven sample distribution. Experimental results showed that the improved SimAM ResNet18 model achieved an accuracy of 94. 68% on the test set,which was a 2.89% improvement compared to the benchmark network ResNet18. Compared to other classical convolutional classification models, AlexNet, VGG16, and GoogLeNet, the model accuracy improved by 7. 02%,5. 25%,and 4.31%. The results show that the ResNet model based on the SimAM attention mechanism has a high potential for apple disease leaf classification and recognition with uneven sample distribution.

Key words: apple disease leaf, image classification, transfer learning, SimAM attention mechanism, ResNet18

中图分类号: